

USMANIAN EXPO 2025

USMAN PUBLIC SCHOOL SYSTEM

Nurturing generations to serve the role as leaders of Ummah

To motivate the students in becoming future leaders, capable of providing guidance to the Muslim Ummah in all spheres of life and lead the contemporary world in accordance with the teachings of Islam.

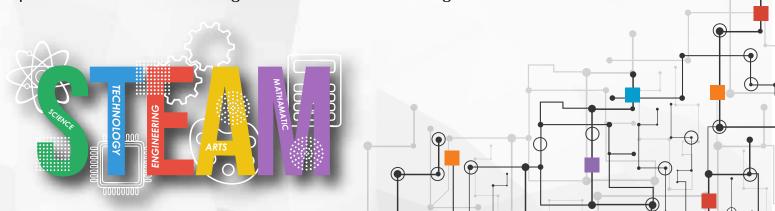
Taqwa (Fear of Allah)

as Role Model خاتم التبيين مالخيليم as Role Model

Enjoining good and forbidding evil Research and Explore

Service of Mankind

Protection of Ideology of Pakistan


ABOUT THE MAGAZINE

Alhumdulillah! This year we present the UPSS STEAM Expo Magazine, a reflection of our students' commitment to inquiry, innovation, and meaningful learning. At UPSS, we recognize that true education extends beyond the acquisition of knowledge. It is rooted in curiosity, critical thinking, and the courage to explore the unknown.

This year's Expo is guided by our system's core value: Research and Exploration. Each project and initiative reflects the perseverance of young minds determined to question, investigate, and create. From sustainable solutions to modern technological applications, our students have embraced the challenge of moving from ideas to discovery.

We remain committed to nurturing learners who view research as a habit of mind and exploration as a pathway to progress. As you read through this edition, you will find evidence of the intellectual rigor, creativity, and collaborative spirit that define the UPSS learning environment.

Together, let us reaffirm our belief that research and exploration are not only academic pursuits but also the driving forces of innovation and growth.

SPIN TO SPARK

This simple classroom model helps students connect science theory to real-world power generation, sparking curiosity about renewable energy and sustainable solutions. It also lays the foundation for understanding larger systems like hydropower plants, wind farms, and electricity grids.

This fascinating classroom experiment shows how mechanical energy can be transformed into electrical energy using a basic pulley-motor system. Students not only get hands-on experience but also learn the principle behind how thousands of megawatts of electricity are produced around the world.

Participant's names (Class IX) : Abiha Adnan | Anabia Hasan Mechanical Input – The experiment begins with a pulley that is rotated by hand (or by pedaling). Shaft Rotation – This motion spins the shaft of a small DC motor. Motor as Generator – Acting as a generator, the motor converts this rotational motion into electrical energy through electromagnetic induction. Lighting the LED – The generated electricity travels through a simple circuit and lights up an LED, creating a visible result for learners.

Carbon Purification Process Cleaning the Air We Breathe

If industries, vehicles, power plants, and waste management facilities adopt such carbon purification systems, we can drastically cut air pollution — resulting in healthier communities, cleaner cities, and a greener Earth.

This model demonstrates how polluted air can be cleaned using charcoal, paper, cardboard, and other waste materials. The aim is to reduce harmful smoke and gases before they are released into the environment — promoting cleaner air and a healthier planet.

Participant's names (Class XI-XII) : Syeda Azka Ahmed | Subrum Gohar Manahil Khan | Madiha Jabeen In this model, polluted air is pushed by a blower into a chamber filled with activated charcoal. The charcoal adsorbs harmful gases, smoke, and carbon particles, while a cotton layer may trap dust. As a result, the pollutants remain inside the chamber, and cleaner air exits through the outlet tube. If industries and other major pollution sources like vehicles, power plants, agriculture and waste management adopt the carbon purification process we will have cleaner air, better health, and a greener earth

TRADITIONAL WATER WHEEL A RENEWABLE ENERGY SYSTEM

The traditional water wheel project demonstrates how rural communities can harness the natural flow of rivers to generate renewable energy. By using a simple yet effective mechanical system, water wheels convert flowing water into rotational energy. This energy can be used for irrigation, rice milling, and even small- scale electricity generation. The process is eco-friendly, low-cost, and has been in practice for centuries, making it highly relevant in today's search for sustainable solutions.

HOW IT WORKS

This model is the visual representation of converting mechanical energy into electrical energy. In this model the water in the tub is being suckedup through the motor to the bottle. When the water in the bottle overflows from it, it fallson the wheel and it starts rotating. The dynamo attached with the wheel converts the mechanical energy produced by the spinning of wheel into electrical energydue to which the lights are being lighten up.

This project aims to demonstrate that how free electricity can be generated through water. Demonstrating that how mechanical energy can be converted into electrical energy.

Furthermore, this model is cost-friendly to establish in villages ,rural areas or in such cities which are located below to the sea level.

ULTRASONIC ACOUSTIC LEVITATION

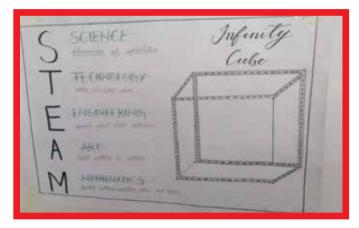
Beyond being a fascinating classroom experiment, it unlocks the deeper potential of sound, not just as something we hear, but as a practical tool

to manipulate matter.

This project aims to demonstrate how highfrequency ultrasonic waves can create acoustic pressure powerful enough to suspend small objects in mid-air.

HOW IT WORKS

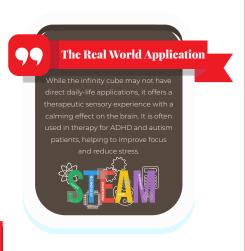
The setup uses ultrasonic transducers placed face-to-face, emitting sound waves at a high frequency. When these waves collide, they form "pressure nodes," points where the force is strong enough to trap and suspend objects. To the eye, it looks like magic. In reality, it's the power of physics that paves the way for futuristic applications in medicine, technology, transportation, and even space research.



Participant's names(Class XII) : Durdana Kanwal | Fizza Usman Khuwaja atwat Masud Al Hasan | Hoorain Haseeb Khan

Infinity Cube – Where Science Meets Mindfulness

Beyond being a fascinating classroom experiment, it unlocks the deeper potential of sound, not just as something we hear, but as a practical tool to manipulate matter.



The Infinity Cube project aims to teach students about the laws of reflection and refraction, while also touching upon geometry, psychology, and neuroscience. Beyond science, it explores how the brain forms patterns through lights and reflections — combining physics with the study of human perception.

Leds On The Inside Reflect Off The Reflective Side Of The Film, Bouncing Back And Forth Between The Walls Of The Cube Creating An Illusion Of Infinite Depth.

Laser Security Alarm – Invisible Protection for Safer Spaces

The Laser Security Alarm is simple, reliable, and cost-effective, making it an ideal choice for homes, schools, and even high-security environments where quick response to intrusion is critical.

The Laser Security Alarm is designed to detect unauthorized intrusions by creating an invisible barrier of light. When someone crosses the beam, the system immediately triggers an alarm, alerting occupants or security personnel — offering a precise, high-accuracy way to protect any space.

Invisible Barrier: A laser transmitter projects a narrow, invisible laser beam across a protected space. Continuous Monitoring: A light-dependent resistor (LDR) or similar sensor continuously measures the light intensity from the laser beam. Intrusion Detection: If any object or person crosses the beam, the light reaching the LDR is blocked, causing a change in its resistance. Alarm Activation: This change in resistance is detected by a connected electronic circuit, which then activates an alarm, such as a buzzer, to signal the intrusion.

WiFi switch

Participant's names: (class XII) MEERAB FAISAL | SUHAIRA KHAN FATIMA MUJAID | SOHA TEHREEM

Smart Waste Management – A Cleaner Greener Karachi

This smart waste management approach will:

Reduce pollution and improve public health.

Encourage recycling and eco-friendly urban practices.

Generate renewable energy and compost, promoting a circular economy. Help Karachi take a major step toward becoming a sustainable, smart city.

To transform Karachi into a clean and sustainable city by introducing smart waste collection systems and modern waste management techniques. This project aims to reduce pollution, promote recycling, and convert waste into valuable resources such as compost fertilizer, renewable energy, and clean fuel.

Smart Collection: Sensor-equipped bins detect when they are full and signal the collection unit. Waste Segregation: Collected waste is separated into organic and inorganic parts. Composting:
Organic waste is biologically
decomposed into nutrient-rich
compost for soil improvement.
Energy Recovery: Non-recyclable
waste is processed in incineration
plants to generate heat and
reduce landfill volume. Renewable
Power: Part of the organic waste is
fed into MFCs, producing
eco-friendly electricity.

Participant's names(Class XII) : Humera Talat | Syeda Umna Atif Syeda Umaima Fatima | Bushra Waqar

Wi-Fi Switch Control – Smart Home Automation with ESP32

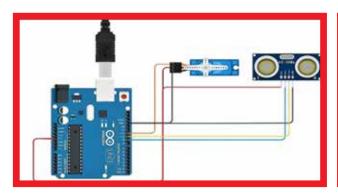
The system is globally applicable for smart homes, energy management, accessibility for the disabled, and industrial automation. Its use of both Wi-Fi and Bluetooth makes it reliable in areas with limited or no internet access.

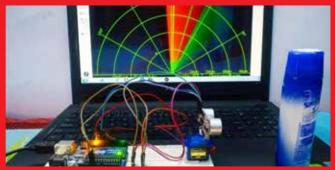
This project demonstrates how to design and build a remote-controlled home automation system using the ESP32 microcontroller. The aim is to improve energy efficiency, enhance accessibility, and build practical skills in coding and electronics.

Sense & Process: The ESP32 microcontroller collects sensor data and processes user commands.

Communicate:

Wi-Fi: Connects to the Adafruit IO cloud platform for global remote control.

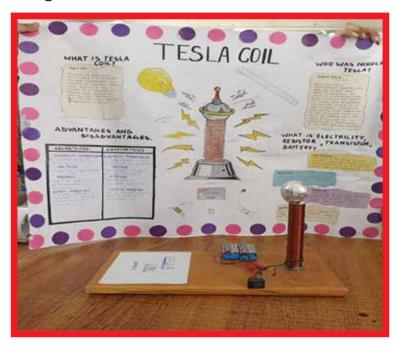

Bluetooth: Provides local control through a mobile app, even without internet.


Control: The ESP32 sends signals to a relay module, which switches appliances on or off as instructed.

Arduino-Based Radar Defense System

The Radar Defence System uses radio waves to detect and track objects like aircraft and missiles. It plays a key role in national security by providing early warning and real-time surveillance. This project explains its working, types, and importance in modern defense

To simulate radar operations using affordable hardware and provide students with hands-on experience in microcontrollers, sensors, and automation — strengthening their understanding of modern defence technology.


The system is built around an Arduino Uno microcontroller. An ultrasonic sensor is mounted on a servo motor, scanning the environment from 0° to 180°. Ultrasonic waves are emitted continuously, and the time taken for echoes to return is measured to calculate object distance. The Arduino processes this data, correlates it with the angular position, and transmits it to a computer. A radar-style graphical interface (created with Processing software) displays detected objects in real-time — just like a real defence radar screen

Participant's names: ABEERA NOOR - IX | SYEDA MAHA - IX MUZAKKA AFTAB - X | MANAIEM ASIAM - X ZAINAB ASIF - X | EMAAN NAZ - X

Tesla Coil - The Spark of Wireless Power

The Tesla Coil is more than a scientific device — it's a window into Nikola Tesla's dream of a world powered by wireless energy. From classroom demonstrations to modern-day innovations, it continues to spark curiosity and imagination in learners and scientists alike

The Tesla Coil is a fascinating invention that demonstrates how electricity can be transmitted without wires. It showcases the principles of resonance and electromagnetic induction, creating both science and spectacle

Primary Coil Current – When current flows through the primary coil, it generates a strong magnetic field.

Induction – This magnetic field induces a very high voltage in the secondary coil.

High Voltage Output – The secondary coil produces spectacular sparks

and allows energy to transfer wirelessly

Wastewater Treatment Model Turning Dirty Water Clean

This simple model helps students understand the science behind wastewater management. It also builds awareness about the global water crisis and inspires practical solutions for a sustainable future.

This model demonstrates how wastewater can be treated step by step to make it safe for reuse. It highlights the importance of water conservation and pollution control — key lessons for students in today's world.

Sedimentation – Wastewater is allowed to stand so that heavy particles settle at the bottom.

Absorption – Charcoal or similar materials absorb dissolved impurities and odors.

Filtration – The water passes through layers of sand, gravel, and cotton to remove remaining particles.

Clean Output – The process results in visibility of cleaner water, showing students how treatment works in real life.

Participant's names (Class X) : Syeda Hooriya Fatima | Sarah Khan

Hydraulic Rocket – Bringing Pascal's Law to Life

A visual, hands-on experiment that turns theory into an exciting event.

Reinforces two major physics principles — Pascal's Law & Newton's Third Law (action-reaction). Encourages curiosity about real-world applications in engineering, automobiles, and fluid mechanics.

Pressure Application – When you press the plunger of the syringe, you apply pressure to the liquid inside. Equal Pressure Transmission According to Pascal's Law, this pressure spreads equally throughout the liquid.

Force Generation – The force pushes on the opposite side of the system, causing water to shoot out. Rocket Launch – The reaction force propels the rocket (or object) upward — an exciting application of physics in action!

Participant's names(Class IX) : Ayesha Shahid | Alishba Noor Menal Fatima Saced | Zainab Faisal

The hydraulic rocket is a fun and exciting way to demonstrate Pascal's Law, which states: "A change in pressure applied at any point in a confined fluid is transmitted equally in all directions throughout the fluid." This simple yet powerful concept helps students see how pressure in fluids can be used to generate motion.

Solar Desalination – Turning Sunlight into Freshwater

Ideal for Remote Islands: Eliminates the need for costly water transportation. Sustainable & Clean: Uses renewable solar power instead of fossil fuels, reducing carbon emissions.

Future-Ready: A reliable solution for regions facing droughts, climate change, and freshwater shortages.

To provide clean drinking water by using renewable energy, making it a sustainable solution for areas where water is scarce and transporting freshwater is expensive.

A solar desalination plant uses solar energy to convert salty seawater into fresh, drinkable water.

Solar Heat: The sun's energy heats seawater.

Evaporation & Condensation: The water vapor is collected and condensed into pure freshwater.

Storage: The fresh water is stored for drinking, cooking, or irrigation.

Participant's names(Class X) : Hafsa Faisal | Fatima Rehman Fatima Abid | Fatima Umer Umamah Ahmed

Application of Fleming's Right-Hand Rule

Understanding Fleming's Right-Hand Rule builds the foundation for learning electromagnetism and electromechanical systems. It bridges the gap between theory and real-world technology—showing how a simple hand gesture represents the science behind the movement of machines that power our daily lives.

To understand the effect of a magnetic field on a current-carrying conductor and how the direction of motion (force) can be determined using Fleming's Right-Hand Rule.

When an electric current passes through a conductor placed in a magnetic field, it experiences a force. According to Fleming's Right-Hand Rule, if you stretch the thumb, forefinger, and middle finger of your right hand so that they are mutually perpendicular, then: The forefinger represents the direction of the magnetic field, The middle finger shows the direction of current, and The thumb points in the direction of motion (force) experienced by the conductor. This simple rule helps predict how electric energy converts into mechanical motion—forming the basic working principle of many electrical devices.

Participant's names(Class X) : KAMRAN ASHRAF | ALIYAN MUHAMMAD EBADULLAH

Test Your Skills with Triangles

Triangles play a vital role in real-world designs —

Construction and Architecture: Used in bridges, towers, and roof trusses to ensure strong and stable structures.

Engineering and Design: Applied in robotics, vehicles, and machinery for support and precision.

Safety and Navigation: Seen in road signs and design elements where visibility and strength are key.

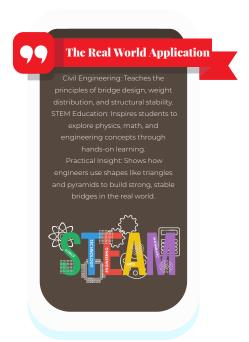
To help students explore and understand the properties, angles, and symmetry of triangles through observation and problem-solving activities. This hands-on experience strengthens conceptual understanding of geometry while enhancing analytical and creative thinking skills.

Students engage in interactive exercises where they identify, draw, and construct triangles of different types. Through guided observation, they explore how changing the sides and angles affects the triangle's shape and stability. By experimenting with patterns, models, and puzzles, learners visualize the mathematical relationships that make triangles one of the most reliable structural forms.

Participant's names(Class X) : Hassan Sami | Ammar Imran

Popsicle Bridge – Big Strength from Small Sticks

The Popsicle Bridge project proves that good design can turn weak materials into strong structures. It encourages creativity, teamwork, and problem-solving while giving students a hands-on introduction to engineering and physics



To demonstrate how shape and design affect strength in structures, showing that even light materials like popsicle sticks can support heavy loads when arranged correctly.

Design Principle: The bridge is built using pyramidal and triangular shapes that distribute weight evenly across a larger area.

Strength Demonstration: When weight is applied, the structure channels force efficiently, allowing even lightweight popsicle sticks to hold impressive loads — even the weight of a person

Participant's names(Class IX) : Yalish | Abdullah Amanullah Ahmed Raza Faisal | Abdul Hannan

Vertical Axis Wind Turbine – Turning Traffic into Power

This project uses existing traffic flow as a free energy source, producing low-cost electricity and improving road safety — especially in areas where power outages cause accidents. It's a creative step toward clean energy and smart infrastructure.

Safety First: Reduce highway accidents by ensuring uninterrupted power for streetlights and traffic signals.

Affordable Power: Generate cheap, eco-friendly electricity using wind created by moving vehicles.

Wind Generation: As heavy trucks and cars pass, they create strong wind currents.

Rotation: This wind spins the vertical axis wind turbine installed on the road median.

Power Production: The spinning turbine generates electricity, which is stored or

directly used for:

Streetlight illumination
Traffic signal operation

Environmental Protection Project Keeping Our Planet Safe

This project focuses on proactive environmental care, helping protect forests, soil health, and air quality while encouraging industries to adopt sustainable waste management practices. It is a step toward a cleaner, greener future for all.

To prevent damage to forests, soil, and the environment by controlling harmful waste before it is released into nature

Waste Storage: Factories are required to store waste materials, especially harmful gases, instead of releasing them directly into the atmosphere.

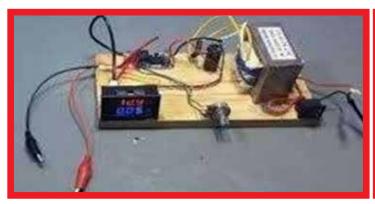
Reuse & Conversion: Collected waste is treated or converted into useful by-products that can be used by other industries — reducing pollution and promoting a circular economy.

Participant's names(Class IX) : Bilal Abid | Nabeel Farooq Mirza Hamdan

Optical Illusion – The Power of Triangles

Optical illusions combine art, psychology, and science, helping learners appreciate how the human brain processes images. This understanding enhances creativity, critical thinking, and observation skills, showing that science is not just about facts—it's about how we see the world

To explore how optical illusions work and how they can deceive the human brain by creating images that differ from reality. The activity helps students understand visual perception, reflection, and pattern recognition, connecting art with science


Optical illusions occur when our eyes and brain interpret visual information incorrectly. Certain patterns, colors, or angles cause the brain to perceive motion, depth, or shapes that don't actually exist.

Through simple classroom demonstrations—like mirror illusions, shape patterns, or light reflections—students learn how light, symmetry, and geometry affect what we see.

Participant's names(Class IX) : Hassan Sami | Ammar Imran

Variable DC Power Supply Module Power at Your Fingertips

This project builds core electronics skills, giving students confidence to work with real-world circuits, troubleshoot power issues, and design projects that require precise voltage and current control — a critical foundation for robotics, IoT, and automation

EXplore how ultrasonic and IR sensors detect obstacles and interface with microcontrollers.

·Gain hands-on experience in Arduino programming to read sensor data and control motors.

•Practice diagnosing hardware/software issues and optimizing performance for better detection accuracy and response time.

Detection: Ultrasonic/IR sensors continuously scan for obstacles.

Processing: A microcontroller (like Arduino) interprets sensor signals.

Action: If an obstacle is detected, the robot stops and turns (left/right) to find a clear path.

Navigation: The process repeats, allowing smooth, autonomous movement without collisions

Participant's names (Class IX and IXO) : Hambal | Afnan | Abdullah | Ismail | Yascen | Ibrahim | Abu-Bakar Zaid bin sajid | Abdullah Nadeem | Ahsan | Anas bin Asif | Abdul Hadi | Ehsan

Patient Health Monitoring System

This project highlights how technology can improve healthcare accessibility and save lives. With real-time monitoring, patients — especially those in remote or underserved areas — can receive timely care. It also reduces the burden on hospitals by enabling home-based health tracking

Remote Monitoring: Track patient vital signs and health metrics from a distance.

Real-Time Data: Collect and display data instantly for quick decision-making.

Early Detection: Identify potential health issues early, allowing timely

intervention and treatment.

Components Used:

oArduino UNO (the "brain")

oMAX30100 Pulse Oximeter (measures pulse & oxygen levels)

oLCD Module (displays readings)

oJumper Wires & Breadboard (easy, solder-free connections)

oBattery (portable power source)

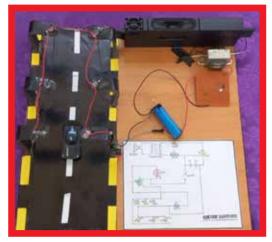
Circuit & Function:

oThe pulse oximeter sends data to the Arduino board via jumper wires.

oThe Arduino processes the readings and sends them to the LCD display.

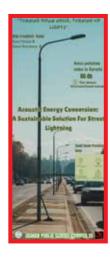
oThe display shows live pulse rate and oxygen saturation (SpO_2) .

oEverything is powered by a small battery, making it portable and easy to use.



Participant's names(Class X) : Samiya Ashar | Zara Khalid Ayesha Rehan | Eshaal Shayan

Acoustic Energy Conversion: A Sustainable Solution for Street Lighting


Turning Noise into Light: A Smart Way to Reduce Pollution

We live in a world where noise pollution has become part of daily life — from honking traffic to bustling city streets. But what if all that unwanted sound could be turned into something useful? Imagine converting noise into electricity to power street lights. That's exactly the innovation behind a new sound-to-energy project!

The goal is simple yet powerful:
Reduce noise pollution.
Capture sound energy and
convert it into electrical

Use that energy to power LED lights and charge small batteries or capacitors.

The Big Picture

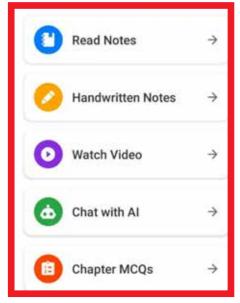
This project is more than just clever engineering — it's a vision of a sustainable future where everyday problems are transformed into solutions. By harvesting the wasted energy of sound, we not only fight noise pollution but also light up our world in greener, smarter ways.

energy.

Qausar Hive – The All-in-One Learning Hub for Students

With Qausar Hive, students can:

Access All Subjects: Browse every subject and chapter in a structured way.


Study Anytime: View digital notes and handwritten notes for quick revision.

Learn Visually: Watch concept-explainer videos for deeper understanding.

Test Knowledge: Take multiple-choice quizzes and track progress.

Ask AI: Get instant answers through an AI-powered chatbot — like having a personal tutor available 24/7.

Qausar Hive is
designed to provide
students with a
complete, organized,
and interactive
learning experience —
all in one app.

Qausar Hive was developed using React Native, allowing a single codebase to run on both Android and iOS devices. For development, Expo was chosen, which streamlined the build process and made testing faster and smoother.

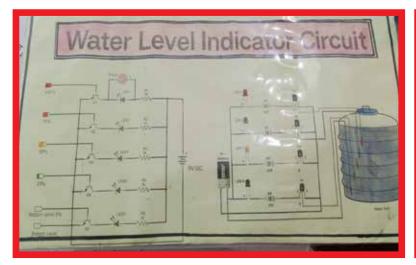
ATMOSPHERIC WATER HARVESTER

Catching Water from Fog: A Breakthrough for Pakistan In many parts of the world, water scarcity is one of the greatest challenges of our time. Punjab, Pakistan, faces a double problem — chronic water shortages and dense fog and smog that threaten health and safety. But what if the very fog that chokes the air could be turned into a source of clean, fresh water? That's the vision behind Pakistan's first sustainable fog harvesting system — a cost-effective solution that transforms fog into drinkable water while helping reduce pollution.

implement a
sustainable,
affordable system
to harvest water
from fog. Reduce
the risks of fog and
smog while
providing a new
source of
freshwater.

Fog Simulation – A humidifier produces fog droplets (tiny particles just 3–10 microns in size).

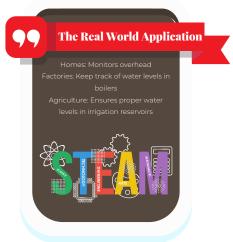
Charging the Droplets – An arc generator creates a corona discharge, ionizing the air. Neutral fog droplets collide with these ions and become charged.


Attracting the Water – The charged droplets are pulled towards a fine mesh under an electric field.

Collecting the Water – Droplets stick, merge, and drip down into a collector plate, producing usable water.

Water Level Indicator – Smart Solution for Efficient Water Management

With water becoming a precious resource, such devices make homes smarter, industries safer, and agriculture more efficient — all while helping protect the environment


The Water Level Indicator is designed to monitor and display the water level in a tank, helping to prevent overflow and ensure efficient use of water resources.

Probes/Sensors: Installed at different levels in the tank to detect water presence.

LED Indicators: Each probe lights up a corresponding LED when water reaches that level.

Overflow Prevention: When the top probe is reached, it can trigger a buzzer or switch off the motor automatically.

Participant's names(Class IX) : Sana Sheikh | Ayesha Fayyaz Aneeqa Meeraj | Fareeha Shoukat

Wireless Car – Learning the Future of Mobility

This project gives students a taste of robotics, automation, and wireless communication, sparking interest in fields like autonomous vehicles, drones, and IoT technology

This project introduces students to the basics of wireless technology and shows how communication between devices powers modern innovations like drones and autonomous vehicles.

The wireless car is paired with a smartphone or controller via Bluetooth. Commands sent through the app are received by the Arduino, which drives the motors to move the car forward, backward, left, or right — a mini demonstration of modern driverless systems

Participant's names(Class IX) : Taha Farooq | Omer Qazi Musab bin Touseef | Arfeen Ahmed

Firefighting Robot – Smart Technology for Safer Environments

This project combines robotics, automation, and safety engineering to create a system that can save lives, protect property, and assist first responders — a true example of technology serving humanity.

This project aims to design and develop a firefighting robot prototype that can detect and extinguish fires in different environments, reducing the risk of fire-related injuries and fatalities.

Heat Detection: Sensors detect the presence of heat or flames.

Autonomous Navigation: The robot moves toward the fire automatically.

Extinguishing System: A small water pump sprays water to control or put out the fire.

Remote Control: Users can also operate the robot manually via Bluetooth and a smartphone app, allowing precise control when needed.

Participant's names(Class IX- X) : Fatima Ibrahim | Leena Imran Lamees Junaid

COORDINATE GAME

Graphs and coordinates are not just math topics – they help us navigate, design, play games, analyze sports, study space, manage businesses, and even save lives in medicine.

To make learning 2D & 3D coordinates fun by using a game-based approach where students roll dice, find points, and form shapes on a graph board

Roll two octahedron dice – one for X and one for Y.

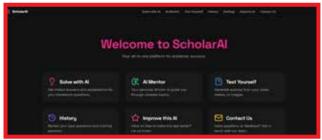
Plot the point (X, Y) on the graph board.

Players compete to find points correctly and form shapes (triangle, square, etc.).

Points are awarded for every correct point pinned and shape completed

Participant's names(Class IX) : Muhammad Arman Siddiqui | Mudabbir Mansoor Muhammad Afris Gul

Scholar AI – Your AI-Powered Learning Assistant


Unlike typical AI chatbots, ScholarAI combines:

Problem-Solving – Clear, subject-specific solutions.

Mentorship - Personalized learning with interactive Q&A.

Self-Testing – Automatic quiz generation for effective revision.

Its ability to process text and images, create quizzes from user-provided material, and offer an interactive learning environment makes it a practical, student-focused solution for modern education.

ScholarAI is built to guide and support

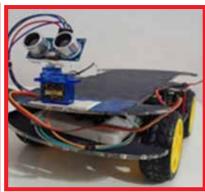
students throughout their learning journey — helping them with assignments, classwork, homework, and concept clarity while encouraging independent learning.

ScholarAI combines modern web technologies with powerful AI models to create a smooth, interactive learning experience.

Frontend: Built with React + Next.js and styled with Tailwind CSS, the interface is fast, responsive, and student-friendly, with smooth transitions and a theme toggle for customization. Backend: Uses Next.js API routes integrated with Google Vertex AI and Transformers.js for

natural language understanding, question generation, and quiz creation. Al Power: Google's Vertex Al models handle text and image inputs, providing accurate answers, explanations, and custom quizzes for any subject.

Together, this setup ensures speed, reliability, and intelligent results — whether students are solving problems, exploring concepts, or testing themselves.


Participant's names(Class IX) : Arman Siddiqui

Robotic Car – Smart Obstacle Avoidance in Action

This project introduces students to robotics, programming, and automation — giving them a taste of how modern autonomous systems work. It inspires future engineers to explore Al-powered mobility solutions.

Design & Build: Create a robotic car that can automatically detect and avoid obstacles.

Hands-On Learning: Apply robotics, electronics, and programming concepts to a real-world problem

Detection: Ultrasonic sensors continuously scan for obstacles in the car's path.

Decision-Making: A microcontroller (e.g., Arduino) processes sensor data. Action:

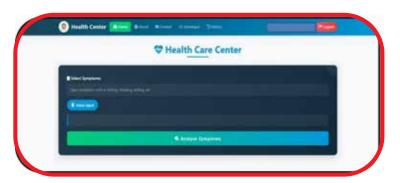
Car moves forward if no obstacle is detected.

Car turns left or right when an obstacle is detected to avoid collision.

Continuous Navigation: The process repeats, allowing smooth, autonomous movement

Participant's names(Class IX) : Shahzeen | Adina Syed | Arman Ijaz | Syeda Fariya | Huda Arif Abeera Ali Zoha Shahab | Sohaira Shafqat | Abrish Fawad | Manahil Khan | Tehreem Fatima

AI-Powered Disease Prediction & Healthcare Recommendation System


Preliminary Health Check at Home – Helps users assess symptoms before visiting a doctor.

Support for Rural Areas – Provides medical guidance where healthcare facilities are limited.

Online Consultations – Integrates easily with telemedicine platforms.

Pandemic Situations – Quickly screens large populations for symptoms.

Health Awareness – Educates users about preventive care and healthy living

This project aims to create a web-based health assistant that predicts possible diseases based on symptoms entered by users and provides personalized recommendations — including medications, precautions, workouts, and diet plans.

This project aims to create a web-based health assistant that predicts possible diseases based on symptoms entered by users and provides personalized recommendations — including medications, precautions, workouts, and diet plans.

Tyndall Effect – When Light Shows the Way

Understanding the Tyndall Effect is crucial for pollution control, clean water initiatives, and scientific research — helping us see what's hidden and take action for a cleaner, healthier environment.

To observe the Tyndall Effect and use it to distinguish between a true solution and a colloidal solution, while understanding its role in detecting impurities in air and water.

When a beam of light is passed through a medium (air, water, or colloid): True Solution: The light passes straight through and is not visible.

Colloidal Solution: The light beam becomes visible due to scattering by tiny particles.

This scattering of light is called the Tyndall Effect.

Participant's names(Class X) : Muhammad Taha | Musabbeh Hamdani Rana Huzaifa Ahmed

AI Against Cyberbullying – Protecting Students in the Digital Age

In today's connected world, students spend hours on social media and online platforms — but along with opportunities come risks. Harmful, abusive, and bullying messages can deeply affect young minds. This project introduces an Al-based system that detects abusive online text using Natural Language Processing (NLP) and Machine Learning (ML) in Python. The system aims to protect students, promote safe digital practices, and raise awareness about cyberbullying.

To develop an

Data Collection - Large datasets of social media comments (in both English and Roman Urdu) are gathered for training. Text Processing – The text is cleaned, broken down into tokens, and words removed. Feature unnecessary are Extraction – Text is converted into numbers using TF-IDF, a smart technique that highlights important words. Model Training - A Naive Bayes classifier is trained to differentiate between bullying and non-bullying content. Prediction – When a message is entered, the system predicts whether it is harmful or safe and even shows a confidence score. User Interface - A simple Tkinter-based GUI allows anyone to type in text, check messages, and receive cyber safety tips instantly.

Al-based system that detects harmful and abusive online text using Natural Language Processing (NLP) and Machine Learning (ML) in Python. The aim is to protect students, promote safe digital practices, and create awareness about cyberbullying.

Environmental Protection Project – Keeping Our Planet Safe

This project focuses on proactive environmental care, helping protect forests, soil health, and air quality while encouraging industries to adopt sustainable waste management practices. It is a step toward a cleaner, greener future for all.

To prevent damage to forests, soil, and the environment by controlling harmful waste before it is released into nature

Waste Storage: Factories are required to store waste materials, especially harmful gases, instead of releasing them directly into the atmosphere.

Reuse & Conversion: Collected waste is treated or converted into useful by-products that can be used by other industries — reducing pollution and promoting a circular economy.

Participant's names(Class IX) : Bilal Abid | Nabeel Farooq Mirza Hamdan

Vertical Axis Wind Turbine – Turning Traffic into Power

This project uses existing traffic flow as a free energy source, producing low-cost electricity and improving road safety — especially in areas where power outages cause accidents. It's a creative step toward clean energy and smart infrastructure.

Safety First: Reduce highway accidents by ensuring uninterrupted power for streetlights and traffic signals.

Affordable Power: Generate cheap, eco-friendly electricity using wind created by moving vehicles.

Wind Generation: As heavy trucks and cars pass, they create strong wind currents.

Rotation: This wind spins the vertical axis wind

turbine installed on the road median.

Power Production: The spinning turbine generates electricity, which is stored or directly used for:

Streetlight illumination
Traffic signal operation

Optical Illusion – The Power of Triangles

Optical illusions combine art, psychology, and science, helping learners appreciate how the human brain processes images. This understanding enhances creativity, critical thinking, and observation skills, showing that science is not just about facts—it's about how we see the world

To explore how optical illusions work and how they can deceive the human brain by creating images that differ from reality. The activity helps students understand visual perception, reflection, and pattern recognition, connecting art with science

Optical illusions occur when our eyes and brain interpret visual information incorrectly. Certain patterns, colors, or angles cause the brain to perceive motion, depth, or shapes that don't actually exist.

Through simple classroom demonstrations—like mirror illusions, shape patterns, or light reflections—students learn how light, symmetry, and geometry affect what we see.

Participant's names(Class IX) : Hassan Sami | Ammar Imran

Popsicle Bridge – Big Strength from Small Sticks

The Popsicle Bridge project proves that good design can turn weak materials into strong structures. It encourages creativity, teamwork, and problem-solving while giving students a hands-on introduction to engineering and physics

To demonstrate how shape and design affect strength in structures, showing that even light materials like popsicle sticks can support heavy loads when arranged correctly.

Design Principle: The bridge is built using pyramidal and triangular shapes that distribute weight evenly across a larger area.

Strength Demonstration: When weight is

applied, the structure channels force efficiently, allowing even lightweight popsicle sticks to hold impressive loads — even the weight of a person

Participant's names(Class IX) : Yalish | Abdullah Amanullah Ahmed Raza Faisal | Abdul Hannan

Test Your Skills with Triangles

Triangles play a vital role in real-world designs —

Construction and Architecture: Used in bridges, towers, and roof trusses to ensure strong and stable structures.

Engineering and Design: Applied in robotics, vehicles, and machinery for support and precision.

Safety and Navigation: Seen in road signs and design elements where visibility and strength are key.

To help students explore and understand the properties, angles, and symmetry of triangles through observation and problem-solving activities. This hands-on experience strengthens conceptual understanding of geometry while enhancing analytical and creative thinking skills.

Students engage in interactive exercises where they identify, draw, and construct triangles of different types. Through guided observation, they explore how changing the sides and angles affects the triangle's shape and stability. By experimenting with patterns, models, and puzzles, learners visualize the mathematical relationships that make triangles one of the most reliable structural forms.

Participant's names(Class X) : Hassan Sami | Ammar Imran

Application of Fleming's Right-Hand Rule

Understanding Fleming's Right-Hand Rule builds the foundation for learning electromagnetism and electromechanical systems. It bridges the gap between theory and real-world technology—showing how a simple hand gesture represents the science behind the movement of machines that power our daily lives.

To understand the effect of a magnetic field on a current-carrying conductor and how the direction of motion (force) can be determined using Fleming's Right-Hand Rule.

When an electric current passes through a conductor placed in a magnetic field, it experiences a force. According to Fleming's Right-Hand Rule, if you stretch the thumb, forefinger, and middle finger of your right hand so that they are mutually perpendicular, then: The forefinger represents the direction of the magnetic field, The middle finger shows the direction of current, and The thumb points in the direction of motion (force) experienced by the conductor. This simple rule helps predict how electric energy converts into mechanical motion—forming the basic working principle of many electrical devices.

Participant's names(Class X) : KAMRAN ASHRAF | ALIYAN MUHAMMAD EBADULLAH